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Abstract. Nonlinear parametric wave interaction in a randomly inhomogeneous plasma is 
investigated. One effective growth rate and threshold for the mean amplitude and intensity 
are calculated from Bourret’s integralequation. It is found that in a statistically homo- 
geneous medium the effect of fluctuation is to enhance the threshold values but to make the 
growth weaker. 

1. Introduction 

Extensive work has been done on the interaction of intense electromagnetic waves with 
homogeneous and inhomogeneous plasma (Coste et a1 1975, Porkolab 1978). In all 
these works the plasma is assumed to be tranquil. However, the plasma produced by 
irradiating pellets with a laser or some other agency promotes some fluctuations and is 
likely to be turbulent in general. The background turbulence will create random 
density fluctuation and may influence the propagation characteristics of the interacting 
waves of the parametric coupling process. The investigation of parametric instability in 
presence of background turbulence in a plasma is of great relevance to laser fusion 
problems. 

In this paper the effect of quasistatic random density fluctuation on the scattering of 
an intense electromagnetic wave off an electrostatic plasma wave is discussed. The 
assumption that the density fluctuation is quasistatic is justified if the time period of the 
density fluctuation is long compared with the time of growth of instability of the waves. 
We assume that the fluctuation is time independent and the degree of random 
inhomogeneity is small. One can derive an equation for the ensemble average of the 
wave amplitude (E) with its phase as a random function of position in the framework of 
Bourret’s integral equation, discussed in Van Kampen (1976). 

2. Method of calculation 

One model (Vekshtein and Zaslavskii 1967) that is often assumed for laser interaction 
with random turbulent plasma is the stochastic variation of light phase. According to 
this model, the effects of fluctuations can be interpreted as resulting from interference 
between waves which have acquired different phase shifts during their passage through 
random inhomogeneities. Valco and Oberman (1973) considered the problem where 
the phase changes with many small random jumps and diffuses with a diffusion 
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coefficient which is shown to be equal to the band width. Tarmor (1973) applied the 
model of the Poisson distribution of jumps first introduced by Zaslavskii and Zakhavov 
(1967), with the additional assumption that after the jumps the phase becomes 
decorrelated. Thomson (1975) solved the purely temporal problem with the Kubo- 
Anderson process, while Lava1 et a1 (1977) have extended it to the problem in both 
space and time. In this paper we shall recall the usual coupled mode equations with a 
stochastic driver whose phase only stochastically changes as a Uhlenbeck-Ornstein 
process. We shall discuss its importance in the next section. 

3. The coupled mode equation 

The equations which describe the slow varying evolution of complex amplitudes in a 
plasma medium with random optical index can be written as 

where q (x) = exp(iji K ( y )  dy) and the phase 4 (x) = 5,” K ( y )  dy changes randomly. We 
ignore its time dependence. a1 and a2 are the complex amplitudes: VI and VZ, V I  and v2 
are the group velocities and damping rates of the decay waves respectively. In contrast 
to the Kubo-Anderson process where I$ ( x ,  t )  = S ( t  - x/ Vo), we assume the static 
approximation in our problem, i.e. the Uhlenbeck-Ornstein process as recommended 
by Brissand and Frisch (1974). Hence the process of 4 changes is Gaussian and its 
correlation time is infinitely short ( T ~ +  0) and Markovian. Doob’s theorem (1942) 
asserts that the only Gaussian stationary Markov process is the Uhlenbeck-Ornstein 
process. It has the property of zero mean value and the autocorrelation function 
(Uhlenbeck and Ornstein 1930) 

where the generalised Reynold’s number K in this case will have the form K = uL, 
L = 1/P is the correlation length and u2 = (q5’(0)) is the covariance. 

The main advantage of taking the Uhlenbeck-Ornstein process in the present case is 
that in this process the Bourret approximation turns out to be exact. It will provide a 
check for different approximations for different generalised Reynold’s numbers, as has 
been discussed by Brissand and Frisch (1974). 

3. The Bourret equations for averaged amplitudeg and average 
amplitudes thresholds 

Equation (1) can be written in the form 
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with 

Let us now write the Bourret integral equation 

from which follows a differential equation 

where one has (Al(x)Al(x'))=O when x -x '>xc. Hence as soon as x >x, no error is 
made by extending the integral to infinity, where 

m iw + u2 

with the autocorrelation function mentioned before, 

= exp(u2/p2)[1 -exp(-pIx -x'l)-pjx -xfl]. 

Substituting equation (8) in equation (6), one obtains 
2 

U 
2 %  

PI=- Vl 6 v2 e x p ( 2 )  Jo exp( -nx -;T[e,xp(-px) +px]) dx 

with 77 = (iw + U Z ) /  VZ. Then 

(9) 

where a = n/P +a2/p2 and y(a, x)  is the incomplete Gamma function defined by 
(Abramowitz and Stegun 1965) 

y(a,  x)  = [oxexp(-t)l"' dt. 
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Now the mean amplitudes can be written in the following form: 

x +PIX) ,  

x + P’X), (12) 

where P1 is given by equation (10) and PZ is obtained from PI by replacing vz and Vz by 
vl and VI respectively. For u 2 / p 2  small, one can expand y(a, u 2 / p 2 )  in terms of (+’/p’, 

m = o T ( a + m + l ) ’  

m 

(13) 
Xm ?(a, x )  = x u  exp(-x) 

Then we would obtain to first order 

1 
(14) PI=- Yo2 where AKo = u’/p. 

VI Vz (iw + vz)/ VZ + A&)] 

This result is identical to that obtained in the Kubo-Anderson process. We obtain a 
similar result for Pz. 

Hence the threshold for ( U I )  would read (for VI V2> 0) 

These results agree with those obtained by Lava1 et a1 (1977), for the case Vo = 0. In 
particular the coherent threshold is 

(17) 

In the present case the growth rate is given by a transcendental equation (as is evident 
from equation (10)). However, we can take the lowest-order terms in equation (lo), 
which greatly simplifies matters. Integrals in equation (9) will exist irrespective of the 
signs of Vl and Vz. Thus for la/p( << 1 

2 yo = v1vz. 

The threshold for ( a l )  is given by 

It is clear that the threshold given by the Uhlenbeck-Ornstein process of equation (19)  
is greater than that of the Kubo-Anderson process given by equation (15).  The 
integration in equation (9) can be evaluated in terms of the error function. After some 
straightforward calculations (in the limit z + 00) (using erf z = (1 - 1/22’)), the instabil- 
ity threshold conditions can be written as (for Vl VZ < 0) 

y20 = v1v2(2u2) min(vT/v:, ~ : / v : )  (21) 
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provided 

(&U) > max(I VlI/vl, Iv2I/v2). (22) 

For u2L2<< 1, the lossless modified growth rate is obtained from equation (14), 

A = ?$/ I  Vi VzI(AKo) 

with 

AKo = Iu2Ll = l((SK2))L/. 

This agrees with Bondeson (1977). It may be interpreted as the effect of turbulence 
which introduces random mismatch in the three interacting waves. In spite of the 
complicated form of P1 in equation (10) we obtain the amplification as a function of the 
normalised growth rate y $ / v 1 v 2  given in figure 1. Well above the damping threshold 
this yields 

A / A o = ( v l / V l ) { [ a ’ + x Q ( 2 x / 2 a ’ ) - x  -a’Q(2x12af)](exp u ’ ) ( a ’ ) ‘ ~ ’ - x ’ ~ ( a ) - A o }  

where Q(x21v) is the chi-square distribution ( x 2  = 2x, U,= 2a’) and T ( a )  is the complete 
gamma function, 

Ao = yz/viv2, y ( a f ,  x)  = T(af)[l - Q(2xl2a’)], 

x = u  L I 

2 2  a’ = v 2 ~ /  v2 + u 2 ~ ’ ,  

Figure 1. ( a )  The growth rate in the statistically homogeneous plasma is compared with 
work of others (Anderson 1977). ( b )  The growth rates in a weakly random inhomogeneous 
plasma are shown. 
a ’ = 0 8 .  . ,  a2L2=0,45, a 1 = 0 . 5 .  

- 8 - g 2 ~ ’  = 0,  a’ = 1;  _. g * ~ ’  = 0, a‘ = 1 ; - - - g 2 ~ *  = 0.25, 
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Assuming uL = 0, this reduces (from equation (15)) to 

Who = (v i /  Vd i l -  V I V ~ Y ~ O ) .  
This is compared with the result of Anderson (1977) in figure 1 (h /Ao= 1 - 
( ~ / T ) ( v I v ~ / ~ o )  ). The curves differ in slope only at the intermediate values of 
y:/vlv2. It is interesting to note that the degree of inhomogeneous fluctuation 
increases the threshold values but decreases the growth rate. 

2 1/2 

4. Power stability condition 

The Bourret equation for the average intensity can be written in the following way, 
outlined in § 3: 

where we have 

\ p31 
\ 

where 

- 0 

+exp[ - ( F ) ] ( x - x ‘ ) }  dx’, 

2 0 0  iw + u2 
P I 3  = - I (T(x)T(x’))  exp[ - ( y + - ] ] ( x - x ‘ )  dx‘, 

P31=- y o  I (T*(x)T*(x’)) e x ~ [  -(*+-)](x -x‘) dx’, 

VlV2 0 v2 

VlV2 0 v1 v2 

2 w  iw + v2 

P11 = P33, 
which after integration becomes 
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with 

However, the integrands for P13 cannot be expressed in terms of (x -x ' ) .  
In the limit x + 00, Pi3 = P31= 0. The final result is 

0 -(""')+P33/ 

As before the threshold condition for small a 2 / p 2  can be expressed in a simple form: 

For V1 V2 < 0 the absolute instability threshold can be obtained in the manner outlined 
in § 3, and it reads 

with the validity conditions 

JZa > 41 v11+ v2/l VZI. 

From (21) and (38) it follows that to first order, the absolute instability threshold for 
(a ,  a*)  is lower than that for (a ) ,  a result obtained by Lava1 et a1 (1977). 

5. Discussion 

In this paper the parametric coupling processes have been investigated in presence of 
background density fluctuations. The results are applicable to stimulated Raman 
scattering and can readily be extended to stimulated Brillouin scattering and other laser 
fusion decay instabilities. In figure 1 it is shown that the density fluctuations have 
enhanced the thresholds but quenched the amplification growth rate. 
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We have found explicit expressions for mean amplitudes and intensities in a series of 
partial waves. It was pointed out by Laval et a1 (1977) that in the Kubo-Anderson 
process, the case VI V2 > 0 can be solved exactly. In the present case we have taken a 
more general case and obtained the growth rate as a transcendental function of the 
frequencies and velocities. Hence it is not possible to compare our exact results with 
those of Laval et a1 (1977). However, to first order the conclusion drawn from our work 
agrees with their results. 
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